E y 1 x 2 dy x ydx 0

- 1 x 2 y 2 x 2 y 2 xy dy dx 0
- √ 1 x 2 y 2 x 2 y 2 )+ xy dy dx 0
- Y xy 1 dx x 1 xy x 2y 2 dy 0
- Solve 1 x 2 y 2 x 2 y 2 xy dy dx 0
- X 2 y 2 5 dx =( y xy dy y 0 )= 1
- Y x 1 x prove that x 2 dy dx xy 2 0
- Y 3x 2 dx x 1 xy 2 dy 0
- Xy 2 e 1 x 2 dx x 2 y dy 0
- Dy dx =( xy 2 cosx sinx )/( y 1 x 2 )) y 0 )= 2
- Xy 2 dy x 2 1 dx 0 y 1 ∛ 3
- Y x 2 2 dx 1 x 1 ln xy dy 0
- Cosx senx xy 2 dx y 1 x 2 dy 0